Главная Об электрических измерениях. Достоинства и недостатки



сигнала, равная или кратная частоте исслед>емого напряжения. Режим синхронизации может быть внутренним или внешним. В первом случае синхронизирующим является сам исследуемый сигнал, поступающий на генератор развертки, во втором - внешний сигнал, который подается на вход "Внешняя синхронизация" на панели осциллографа.

Генератор развертки работает в двух основных режимах: непрерывном и ждущем. При непрерывной развертке каждый последующий цикл пилообразного напряжения непрерывно следует за предьщу-щим. Непрерывная развертка удобна, когда исследуется непрерывный периодический процесс или периодическая последовательность импульсов с небольшой скважностью. Если скважность велика, то длительность импульса составляет лишь малую часть периода следования и осциллограмма будет иметь вид вертикальной линии, наблюдение которой не дает информации о форме импульса. Для изучения импульсных последовательностей большой скважности и непериодических импульсов используется ждущая развертка, при которой напряжение развертки подается на горизонтально отклоняющие пластины лишь тогда, когда исследуемый импульс поступает на вход вертикально отклоняющих пластин. Ддите/1Ьность прямого хода развертки обычно выбирается немного больше длительности импульса для того, чтобы он помещался на экране осциллографа и занимал большую его часть.

В некоторых случаях вместо линейной развертки используют круговую или спиральн}ю. Увеличение длины развертки позволяет повысить точность измерения интервалов времени. Чтобы получить круговую траекторию электронного луча, на вертикально и горизонтально отклоняющие пластины подаются синусоидальные напряжения одной и той же частоты и амплитуды, сдвинутые между собой по фазе на 7г/2. Чтобы развертка была не круговой, а спиральной, амплитуды напряжения на пластинах должны линейно уменьшаться от Umax ДО fmin за время, равное длительности развертки. Исследуемый сигнал подается на модулятор, который управляет яркостью свечения пятна на экране.

Структурная схема осциллографа. Структурная схема осциллографа приведена на рис. 2.48. Кроме электронно-лучевой трубки VL она содержит канал вертикального отклонения (канал У), канал горизонтального отклонения (канал X), канал управления яркостью (канал Z), а тгкже калибратор амплитуды и длительности. Исследуемое напря-жегше поступает на входное устройство канала Y, которое включает в себя аттенюатор, позволяющий при необходимости ослабить сигнал и согласовать сопротивление канала с сопротивлением источника сигнала. Усилители А1 V. А2 являются предварительным и оконечным усилителями СООТ1.:ственно. Линия задержки ЕТ используется при работе осциллографа в импульсном режиме. Она позволяет подавать исследуемый импульсный сигнал на пластины Y с задержкой относительно начала периода пилообразного напряжения. Это дает возможность наблюдать фронт исследуемого импульса неискаженным. Без линии задержки не 86



Вход

y-Q-

A1 ET

Входное устройство

ВходХ

BxodZf

Канал X

sz

цепь Ч синхронизации и запуска

Канал Z

А¥ !

Калибратор амплитуды и длительности

Рис. 2.48

-е-С

Выход

удалось бы наблюдать часть импульса, которая приходится на время, необходимое для формирования напряжения развертки.

Канал X служит для формирования и (или) усиления напряжения, поступающего затем на горизонтально отклоняющие пластины и вызывающего горизонтальное перемещение луча. Канал X содержит предварительный и оконечный усилители {A3 и А4 соответственно), цепь синхронизации и запуска, а также генератор развертки G. Переключатель S1 служит для подачи синхронизирующего напряжения с канала Y (внутренняя синхронизация) или со входа X (внешняя синхронизация). Если переключатели S1 и S2 находятся в левом положении, то генератор развертки отключается и на пластины X поступает (через усилители A3 и А4) напряжение со входа X.

Канал Z служит для управления яркостью свечения экрана ЭЛТ. Управление производится как вручную, так и автоматически. Например, производится автоматическое подсвечивание прямого хода ждущей развертки. В промежутке между импульсами, запускающими ждущую развертку, яркость пятна снижена во избежание прожигания лю-минофорного слоя.

Калибратор амплитуды и длительности является источником напряжений с известной амплитудой и длительностью. Эти напряжения подаются с выхода калибратора на вход Y для контроля масштабов (коэффициентов отклонения) по осям Y (В/см, мВ/см или В/деление, мВ/деление) и ЛГ (мкс/см, мс/см или с/см). Знание масштабов необходимо для измерения напряжений и интервалов времени, поскольку



непосредственно оператору доступно считывание только расстояний (сантиметры, деления) по масштабной сетке на экране. В некоторых современных осциллографах измерение осуществляется автоматически при помощи цифрового устройства. Результат отображается на экране в цифровой форме.

Основные характеристики и виды электронных осциллографов. Электронные осциллографы характеризуются рядом технических и метрологических параметров. К наиболее важным относятся следующие:

калиброванные значения коэффициента отклонения;

полоса пропускания, т.е. диапазон частот, в пределах которого коэффициент усиления канала Y уменьшается на 3 дБ по отношению к некоторой опорной частоте;

диапазон изменения длительности развертки;

входное сопротивление и входная емкость канала У;

точностные параметры, характеризующие погрешности измерения напряжения и интервалов времени.

При выборе осциллографа следует исходить из характера измеряемого сигнала (гармонический или импульсный) и его вероятных параметров (ширина спектра, граничные частоты, частота следования, скважность, амплитуда напряжения и т.д.).

Осциллографы подразделяются на универсальные, скоростные, стробоскопические, запоминающие, специальные. Наиболее употребительными являются универсальные осциллографы (в ГОСТ обозначение С1). Они позволяют проводить исследования электрических сигналов в широком диапазоне частот, амплитуд и длительностей сигналов. Полоса пропускания достигает 200-350 МГц, даиапазон амплитуд от единиц милливольт до сотен вольт. Возможно измерение длительностей импульсов от нескольких наносекунд до секудд.

Скоростные осциллографы (обозначение С7) служат для исследования гармонических и импульсных сигналов (включая однократные импульсы) с характерными временами, составляющими доли и единицы наносекунд в реальном масштабе времени. Быстродействие достигается благодаря использованию ЭЛТ с бегущей волной. Полоса пропускания скоростных осциллографов достигает 5 ГГц.

Стробоскопические осциллографы (обозначение С7) используют стробоскопическое преобразование масштаба времени. Их полоса пропускания достигает 10 ГГд. При помощи осциллографов этого вида можно исследовать повторяющиеся сигналы с амплитудой несколько милливольт и длительностью несколько пикосекунд.

Запоминающие осциллографы (обозначение С8) применяются для исследования медленных процессов и однократных импульсов. Запоминание осуществляется при помощи специальных ЭЛТ. Длительность измеряемых интервалов- времени достигает десятков секунд. Время сохранения - от нескольких часов до нескольких суток. 88



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [27] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114


0.0095