Главная Об электрических измерениях. Достоинства и недостатки



электронных цепей. Вносят вклад также погрешности измерительного механизма и градуировки шкалы.

Цифровые вольтметры постоянного тока также широко распространены. Они обладают широким диапазоном измерения, высокой точностью и чувствительностью, быстродействием, удобством считывания показаний, возможностью включения в состав измерительно-вычислительных комплексов. Возможности и особенности цифрового вольтметра определяются в первую очередь характеристиками использованного АЦП. Сушествуют цифровые вольтметры прямого и уравновешиваю-шего преобразования. В схемах прямого преобразования применяются время-импульсные, время-импульсные интегрирующие и частотно-импульсные АЦП, а в схемах уравновешивающего преобразования - АЦП поразрядного уравновешивания.

Цифровые вольтметры прямого преобразования отличаются простотой и высоким быстродействием (более 10 измерений в секунду). В интегрирующих вольтметрах благодаря усреднению напряжения по времени измерения достигается повышенная помехозащищенность. Основным достоинством цифровых вольтметров с АЦП поразрядного уравновешивания является высокая точность измерения (приведенная погрешность ff,01-0,001%). Диапазон напряжений, измеряемых цифровыми вольтметрами разных типов, охватывает диапазон от долей микровольта до единиц киловольт.

Современные цифровые вольтметры содержат микропроцессорные блоки и снабжены клавиатурой, что позволяет автоматизировать процесс измерения, проводить его в соответствии с заданной программой, осуществлять требуемую обработку результатов измерений, расширять функциональные возможности прибора, превратив его в мультиметр, позволяющий измерять не только напряжение постоянного тока, но и многие другие величины: напряжение переменнс;о тока, сопротивление, емкость конденсатора, частоту и др.

Точные измерения напряжения постоянного тока производятся при помощи компенсаторов постоянного тока (§ 2.8). Класс точности этих приборов достигает 0,0005. Пределы измеряемых напряжений - от 10" В до нескольких десятков вольт.

Среднеквадратическое (действующее) значение напряжения перемен-/ 1Г

ного тока {U = / -fu{t)dt) измеряется электромагнитными (до V То

1-2 кГц), электродинамическими (до 2-3 кГц), ферродинамическими (до 1-2 кГц), электростатическими (до 10 МГц) и термоэлектрическими (до 10-100 МГц) приборами.

Выпрямительные приборы реагируют на средневыпрямленное значение

1 Т

UcB = -i \u(t)\dt, Т о



но градуируются обычно в среднеквадратических значениях синусоидального напряжения. Отличие формы измеряемого напряжения от синусоидальной может приводить к большим систематическим погрешностям. Выпрямительные вольтметры используются до частот 10-20 кГц. Электромагнитные вольтметры в основном служат щитовыми приборами. Расширение их пределов измерения достигается использованием измерительных трансформаторов напряжения. Электродинамические, электростатические обычно являются лабораторными приборами, термоэлектрические используются на повышенных частотах. Выпрямительные вольтметры обычно входят в состав многофункциональных переносных измерительных приборов - тестеров.

Эелктронные аналоговые вольтметры применяются для измерения среднеквадратичных, средневьшрямительных и пиковых (амплитудных) значений переменного тока. Их отличает большое входное сопротивление, высокая чувствительность и возможность измерений на высоких частотах (вплоть до сотен мегагерц).

Цифровые вольтметры, предназначенные для измерения напряжения переменного тока, строятся на основе цифровых вольтметров постоянного тока, снабженных преобразователем переменного напряжения в постоянное. В диапазоне частот до 100 кГц их основная погрешность может не превышать 0,5%. Цифровые вольтметры средневыпрямленного значения используют одно- и двухполупериодные выпрямители. В цифровых вольтметрах среднеквадратического значения применяются термоэлектрические преобразователи. Однако инерционность последних существенно снижает быстродействие вольтметров.

Для одновременного измерения амплитуды и фазового сдвига синусоидального напряжения используются компенсаторы переменного тока. Относительная погрешность измерения при помощи компенсаторов лежит в пределах ± 0,5%.

Измерение тока. Постоянный ток измеряется при помощи магнитоэлектрических приборов. Они обеспечивают наивысшую точность среди электромеханических аналоговых приборов (класс точности 0,05-2,5).

Магнитоэлектрические амперметры позволяют измерять токи от 10~ до 50 А (при измерении токов больше 0,05 А используются внутренние шунты). Применение шунтов приводит к увеличению влияния изменений температуры на показания приборов. Это связано с тем, что вследствие неодинаковых значений температурных коэффициентов сопротивления рамки и шунта происходит изменение соотношения их сопротивлений, а следовательно, и перераспределение текущих по ним токов. Для уменьшения температурной погрешности применяются различные цепи температурной компенсации. Простейшая из них содержит только один элемент - добавочный резистор из манганина, включенный последовательно с рамкой измерительного механизма. Такая термокомпенсация удовлетворительна только для приборов классов точности 1,0 и хуже. Более точные приборы используют несколько более сложные цепи тер-



мокомпенсации, содержащие как последовательные, так и параллельные цепочки резисторов.

Для измерения больших постоянных токов (от 50 А до нескольких килоампер) применяются магнитоэлектрические амперметры и килоам-перметры с наружными шунтами.

Малые постоянные токи (меньше 10~* А) измеряются при помощи гальванометров.

Измерения постоянного тока с повышенной точностью производятся косвенным образом. Образцовый резистор включается в измеряемую цепь и компенсатором измеряется падение напряжения на этом резисторе. Значение тока вычисляется при помощи закона Ома.

Переменный ток измеряется амперметрами электромагнитной, электродинамической и ферродинамической систем. Электромагнитные амперметры являются в основном однопредельными щитовыми приборами (класс точности 1,0; 1,5; 2,5). Они работают со встроенными или наружными измерительными трансформаторами тока, позволяя измерять токи до 300 А и 15 к А соответственно.

Также в качестве щитовых часто работают ферродинамические амперметры. Электродинамические амперметры и миллиамперметры обьино выполняютсяв виде переносных лабораторных приборов. Их типичные классы точности 0,2; 0,5; 1,0. Выпрямительные амперметры обычно входят в состав переносных лабораторных комбинированных приборов (тестеров). Их диапазон измерения - от долей миллиампера до нескольких ампер. Набор шунтов обеспечивает изменение пределов измерения. Точность выпрямительных амперметров невелика (классы точности 1,5; 2,5; 4,0). Другим недостатком является зависимость показаний от формы тока. Термоэлектрические миллиамперметры и амперметры применяются на повышенных частотах (до сотен мегагерц). Их диапазон измерений - от нескольких миллиампер до нескольких ампер. Расширение пределов измерения достигается применением высокочастотных трансформаторов тока. Классы точности 1,0; 1,5. Термоэлектрические приборы имеют малую перегрузочную способность. Это является их недостатком.

Измерение мощности в цепях постоянного и переменного однофазного тока чаще всего производится электродинамическими и ферродинамическими ваттметрами (§ 2.4). Электродинамические ваттметры выпускаются в виде переносных лабораторных многопредельных приборов. Их классы точности 0,1-0,5. Изменение пределов измерения достигается коммутацией секций токовой катушки и подключением различных добавочных резисторов.

Частотный Диапазон электродинамических ваттметров ограничен сверху частотами порядка нескольких килогерц. С повышением частоты индуктивное сопротивление катушек начинает вносить заметный вклад в погрешность прибора.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 [29] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114


0.0127