Главная Устройство молниезащиты в промышленности и строительстве



внутри зданий путем наложения перемычек в местах сближения металлических коммуникаций. Для исключения искрения в местах соединений протяженных металлических коммуникаций обеспечиваются низкие переходные сопротивления - не более 0,03 Ом, например, во фланцевых соединениях трубопроводов этому требованию соответствует затяжка шести болтов на каждый фланец (п. 2.7).

7. ЗАЩИТНОЕ ДЕЙСТВИЕ И ЗОНЫ ЗАЩИТЫ МОЛНИЕОТВОДОВ

Ниже поясняется подход к определению зон защиты молниеотводов, построение которых осуществляется по формулам приложения 3 РД 34.21.122 -87.

Защитное действие молниеотвода основано насвойстве молнии с большей вероятностью поражать более высокие и хорошо заземленные предметы по сравнению с расположенными рядом объектами меньшей высоты. Поэтому на молниеотвод, возвышающийся над защищаемым объектом, возлагается функция перехвата молний, которые в отсутствие молниеотвода поразили бы объект. Количественно защитное действие молниеотвода определяется через вероятность прорыва - отношение числа ударов молнии в защищенный объект (числа прорьшов) к общему числу ударов в молниеотвод и объект.

Существует несколько способов оценки вероятности прорыва, основанных на разных физических представлениях о процессах поражения молнией. В РД 34.21.122-87 использованы результаты расчетов по вероятностной методике, связывающей вероятность поражения молниеотвода и объекта с разбросом траекторий нисходящей молнии без учета вариаций ее токов.

Согласно принятой расчетной модели невозможно создать идеальнзоо защиту от прямых ударов молнии, полностью исключающую прорывы на защищаемый объект. Однако на практике осуществимо взаимное расположение объекта и молниеотвода, обеспечивающее низкую вероятность прорыва, например 0,1 и 0,01, что соответствует уменьшению числа поражений объекта примерно в Ю и 100 раз по сравнению с незащищенным объектом. Для большинства современных объектов при таких уровнях защиты обеспечивается малое количество прорьшов за весь срок их службы.

Выше рассматривалось производственное здание высотой 20 и размерами в плане 100 х 100 м, расположенное в местности с продолжительностью гроз 40-60 ч в год; если это здание защищено молниеотводами с вероятностью прорыва 0,1, в него можно ожидать не более одного прорыва за 50 лет. При этом не все прорывы в равной степени опасны для защищаемого объекта, например воспламенения возможны при больших токах или переносимых зарядах, которые встречаются не в каждом разряде молнии. Следовательно, на данный объект можно ожидать одно

опасное воздействие за срок, заведомо превышающий 50 лет, или для большинства промьшшенных объектов II и Ш категорий не более одного опасного воздействия за все время их существования. Ира. вероятности Прорыва 0,01 в то же здание можно ожидать не более одного про-рлва за 500 лет - период, намного превышающий срок службы любого промышленного объекта. Такой вксокий уровень защиты оправдан только для объектов I категории, представляющих постоянную угрозу взрыва.

Вьшолняя серию расчетов вероятности прорьша в окрестности молниеотвода, можно построить поверхность, являющуюся геометрическим местом положения вершин защищаемых объектов, для которых вероятность прорыва - постоянное значение. Эта поверхность является внешней границей пространства, называемого зоной защиты молниеотвода; для одиночного стрежневого молниеотвода эта граница - боковая поверхность кругового конуса, для одиночного троса - двускатная плоская поверхность.

Обычно зону защиты обозначают по максимальной вероятности про-ры&г, соответствующей ее внешней границе, хотя в глубине зоны вероятность прорыва существенно уменьшается.

Расчетный метод позволяет построить для стержневых и тросовых молниеотводов зону защиты с произвольньпл значением вероятности прорыва, т.е. для любого молниеотвода (одиночного или двойного) можно построить произвольное количество зон защиты. Однако для большинства народнохозяйственных зданий достаточный уровень защиты можно обеспечить, пользуясь двумя зонами, с вероятностью прорыва 0,1 и 0,01.

В терминах теории надежности вероятность прорыва - это параметр, характеризующий отказ молниеотвода как защитного устройства. При таком подходе двум принятым зонам защиты соответствует степень надежности 0,9 и 0,99. Эта оценка надежности справедлива при расположении объекта вблизи границы зоны защиты, например объекта в виде кольца, соосного со стержневым молниеотводом. У реальных же объектов (обычных зданий) на границе зоны защиты, как правило, расположены лишь верхние элементы, а большая часть объекта помещается в глубине зоны. Оценка надежности зоны защиты по ее внешней границе приводит к чрезмерно заниженным значениям. Поэтому, чтобы учесть существующее на практике взаимное расположение молниеотводов и объектов, зонам защиты А и Б приписана в РД 34.21.122-87 ориентировочная степень надежности 0,995 и 0,95 соответственно.

Линейные зависимости между расчетными параметрами зон защиты типа Б позволяют с достаточной ддя практики точностью оценивать высоты молниеотводов с помощью номограмм, сокращающих объем вычислений. Такие номограммы, построенные в соответствии с формулами и обозначениями приложения 3 РД 3421.122-87, приведены на



Гх.Г,,Н

гго-

200-i

1S0-

120-

so 4

\ по-.

юо-. to\i

/ 40

О Ж вз1о ..

г 120

-100 /

20-. ТО

F1S0 750 3

г 140 100-.

г 130 SSO.

г 120 600-i

г 110 550 -.

\lOO 500\

\30 Ш \

г SO ш\

i- 70 3soi

--so

г40 \

rSO S00-.

г 50 250 i

г 40 200 \

\30 150 --

- 20 100 -1

г 10 50 -.

yLo о 1

Ключ

11,0rttO

120-

1ва -ао го 7 во

so-so-.

г 150

г 130

70- -70

30 Л г 30

20- тго

10 \ \io -.0±±0.

-60 г 50 \40

Лс,м Е-/5»

-140

\lSO

\l20

г 110

rlOO

-90

г so

-50 \40 -30 -20 г 10 10

Рис П4.1. Номограммы для определения высоты одиночных (в) и двойных равной высоты (б) молниеотводов в зоне Б

pic. П4.1 доя определения высот стержневых С и тросовых Т одиночных и двойных молниеотводов (разработка Гипропрома).

Расчетный метод верояпюсти прорыва шзработан только для нисходящих молний, преимущественно поражающих объекты высотой до 150 м. Поэтому в РД 3421.122-87 формулы доя построения зон защи-46

ты одиночных и многократных стержневых и тросовых молниеотводов ограничены высотой 150 м На сегодняшний день объем фактических данных о поражаемости нисходящими молниями объектов большей высоты очень мал и в большей своей части относится к Останкинской телевизионной башне. На основании фоторегисграций можно утверждать, что нисходящие молнии прорьтаются более чем на 200 м ниже ее вершины и поражают землю на расстоянии около 200 м от основания башни. Если рассматривать Останкинскую телевизионную башню как стержневой молниеотвод, можно заключить, что относительные размеры зон защиты молниеотводов высотой более 150 м резко сокращаются с увеличением высоты молниеотводов. С учетом ограниченности фактических данных о поражаемости сверхвысоких объектов в РД 34.21.122-87 включены формулы доя построения зон защиты только доя стержневых молниеотводов высотой более 150 м.

Метод расчета зон защиты от поражений восходяищми молниями пока не разработан. Однако по данным наблюдений известно, что восходящие разряды возбуждаются с остроконечных предметов вблизи вершины высоких сооружений и затрудняют развитие других разрядов с более низких уровней. Поэтому доя таких высоких объектов, как железобетонные дымовые трубы или башни, предусматривается прежде всего защита от механических разрушений бетона при возбуждении восходящих молний, которая осуществляется путем установки стержневых или кольцевых молниеприемников, обеспечивающих максимально возможное по конструктивньи! соображениям превышение над вершиной объекта (п. 2.31).

8. ПОДХОД К НОРМИРОВАНИЮ ЗАЗЕМПИТЕЛЕЙ МОЛНИЕЗАЩИТЫ

Ниже пояснен принятый в РД 34.21.122-87 подход к выбору заземпителей молниезащиты зданий и сооружений.

Одним из эффективных способов ограничения грозовых перенапряжений в цепи молниеотвода, а также на металлических конструкциях и оборудовании объекта является обеспечение низких сопротивлений заземпителей. Поэтому при выборе молниезащиты нормированию подлежит сопротивление заземлителя или другие его характеристики, связанные с сопротивлением.

До недавнего времени доя заземпителей молниезащиты нормировалось импульсное сопротивление растеканию токов молнии: его максимально допустимое значение было принято равным 10 Ом дая зданий и сооружений I и II категорий и 20 Ом доя зданий и сооружений III категории. При этом допускалось увеличение импульсного сопротивления до 40 Ом в грунтах с удельньпл сопротивлением более 500 Ом • м при одновременном удалении молниеотводов от объектов I категории на расстояние, гарантирующее от пробоя по воздуху и в земле. Для на-



ружных установок максимально допустимое импульсное сопротивление заземлителей было принято равлым 50 Ом.

Импульсное сопротивление заземлителя является количественной характеристикой сложных физических процессов при растекании в земле токов молнии. Его значение отличается от сопротивления заземлителя при растекании токов промышленной частоты и зависит от нескольких параметров тока молнии (амгагитуды, крутизны, длины фронта), варьирующихся в широких пределах. С увеличением тока молнии импульсное сопротивление заземлителя падает, причем в возможном интервале распределения токов молнии (от единиц до сотен килоампер) его значение может уменьшаться в 2-5 раз.

При проектировании заземлителя нельзя предсказать значения токов молнии, которые будут через него растекаться, а следовательно, невозможно оценить наперед соответствующие значения импульсных сопротивлений. В этих условиях нормирование заземлителей по их импульсному сопротивлению имеет очевидные неудобства. Разумнее выбрать конкретные конструкции заземлителей по следующему условию. Импульсные сопротивления заземлителей во всем возможном диапазоне токов молнии не должны превьппать указанных максимально допустимых значений.

Такое нормирование было принято в пп. 2.2, 2.13, 2.26, табл. 2: для ряда типовых конструкций были подсчитаны импульсные сопротивления при колебаниях токов молнии от 5 до 100 кА и по результатам расчетов проведен отбор заземлителей, удовлетворяющих принятому условию.

В настоящее время распространенными и рекомендуемыми (РД 34.21.122-87, п. 1.8) конструкциями заземлителей являются железобетонные фундаменты. К ним предъявляется дополнительное требование - исключение механических разрушений бетона при растекании через фундамент токов молнии. Железобетонные конструкции вьщержи-вают большие плотности растекающихся по арматуре токов молнии, что связано с кратковременностью этого растекания. Единичные железобетонные фундаменты (сваи длиной не менее 5 или подножники длиной не менее 2 м) способны без разрушения выдерживать токи молнии до 100 кА, по этому условию в табл. 2 РД 3421.122-87 заданы допустимые размеры единичных железобетонных заземлителей. Для фундаментов больших размеров с соответственно большей поверхностью арматуры опасная для разрушения бетона плотность тока маловероятна При любых возможных токах молнии.

Нормирование параметров заземлителей по их типовым конструкциям имеет ряд достоинств: оно соответствует принятой в строительной практике унификации железобетонных фундаментов с учетом их повсеместного использования в качестве естественных заземлителей; при выборе молниезащиты не требуется вьшолнять расчеты импульсных сопротивлений заземлителей, что сокращает объем проектных работ.

9. ПРИМЕРЫ ИСПОЛНЕНИЯ МОЛНИЕЗАЩИТЫ РАЗЛИЧНЫХ ОБЪЕКТОВ* (РИС. П4-П4.9)


<;1 Рис П4,2. Молниезащита здания I категории отдельно стоящим двойным сгержне-вым молниеотводом (р = 300 Ом • м, Sg <4 м, S3 <6 м) :

f- 1 - граница зоны защиты; 2 - заземлителн-подножники фундамента; 3 - зона защиты на отметке 8,0 м

* Разработаны ВНИПИ Тяжпромэпектропроект, институтом Гипротрубо-провод и ГИЛП.



0 1 2 3 4 5 6 [7] 8 9


0.0466