Главная Магнитный поток и электрический контур




cose

Рис. 5-13

ПО значениям, указанным на соответ-

интерполирования ствующих кривых.

Для более точного определения взаимной индуктивности концентрических круговых контуров можно пользоваться формулой

- [oR2 [Pi (cos 6) 4- -1 бРз (cos 6) +

H--6*p,(cose) +

1024

6«p,(cose) +


-j- t » •

X P2ni(cosQ)-\-

(2n!).(2«-f 1) 2"" (nl)V-bl)

(5-37)

Рис, 5-14

где Pi (cos G), Pg (cos G) , . . . , P2n+i(cos G) . , . -полиномы Лежандра, значения которых для различных п и различных cos G можно найти по таблицам или формулам, приведенным в приложениях 1 и 5. Формула удобна



ппи малых значениях б, т. е. при условии, что один из контуров значительно меньше другого. В противном случае ряд (5-37) сходится медленно.

Пример 5-7. Два концентрических круговых контура, радиусы которых равны ri = 10 см и r2 - 2,5 см, расположены под углом 6 = 60° друг к другу- Определить взаимную индуктивность контуров.

Решение. В данном случае

б = 2,5/10 = 0,25; = 0,0625; 6* = 0,003906; cos О = 0,5. По кривым рис. 5-13 находим ф = 0,3, и, следовательно.

4л-10--0,10 2п

0,3= 6-10-» Гн.

Более точное значение М определяем по формуле (5-37). Из таблиц полиномов Лежандра при cos 6 = 0,5 находим

Pi = 0.5000; Рз = -0,4375; Р5 = 0,0898;

- 62Pg = -0,0103;

-e4Pg = 0,000082.

Искомая взаимная индуктивность

М = ~4п-10--0,25-0,025 (0,5000 -~ 0,0103 -f 0,0001): = 0,1234-10--0.4898 = 6.044- Ю"» Гн.

5-10. ВЗАИМНАЯ ИНДУКТИВНОСТЬ КРУГОВЫХ КОНТУРОВ с ПАРАЛЛЕЛЬНЫМИ ОСЯМИ

1. Контуры одного радиуса (рис. 5-15). Для контуров одного радиуса

где R - радиус контуров; ф - величина, определяемая по кривым рис. 5-16 и 5-17. На этих рисунках по оси абсцисс отложено отношение г\ = y/{2R), по оси ординат-отношение g = x/{2R), где у - расстояние между осями контуров; X - расстояние, на которое центры контуров смещены в осевом направлении. Значения величины ф определяются путем интерполирования - по значениям, указанным на соответствующих кривых.

Более точно взаимная индуктивность в рассматриваемом случае может быть найдена по формуле

м = мок, (5-39)

8* 227

/ R

< У ,

Рис. 5-15




Рис. 5-16

1,2 1,0 0,8




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 [73] 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160


0.0109